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Introduction. The phenomenon/theory of “superoscillations”—brought to my
attention by my friend Ahmed Sebbar1—originated in the time-symmetric
formulation of quantum mechanics2 that gave rise to the theory of “weak
measurements.” Recognition of the role that superoscillations play in that work
was brought into explicit focus by Aharonov et al in 1990, and since that date
the concept has found application to a remarkable variety of physical subject
areas.

Yakir Aharonov took his PhD in 1960 from the University of Bristol,
where he worked with David Bohm.3 In 1992 a conference was convened at
Bristol to celebrate Aharonov’s 60th birthday. It was on that occasion that
the superoscillation phenomenon came first to the attention of Michael Berry
(of the Bristol faculty), who in an essay “Faster than Fourier” contributed to
the proceedings of that conference4 wrote that “He [Aharonov] told me that it
is possible for functions to oscillate faster than any of their Fourier components.
This seemed unbelievable, even paradoxical; I had heard nothing like it
before. . . ” Berry was inspired to write a series of papers relating to the theory
of superoscillation and its potential applications, as also by now have a great
many other authors.

1 Private communication, 17 November 2017.
2 Y. Aharonov, P. G. Bergmann & J. L. Libowitz, “Time symmetry in the

quantum meassurement process,” Phys. Rev. B 134, 1410–1416 (1964).
3 It was, I suspect, at the invitation of E. P Gross—who had collaborated

with Bohm when both were at Princeton—that Aharonov spent 1960–1961 at
Brandeis University, from which I had taken the first PhD and departed to
Utrecht/CERN in February of 1960, so we never met. Aharonov is presently
attached jointly to Tel Aviv University, the Perimeter Institute and Chapman
University, where Ahmed Sebbar—formerly at the University of Bordeaux—
has recently joined the mathematics faculty, which accounts for Ahmed’s recent
interest in superoscillations.

4 Quantum Coherence and Reality: In Celebation of the 60th Birthday of
Yakir Aharomov (1994), available on the web.
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My objective here will be to provide a Mathematica -based survey of the
most basic essentials of the superoscillatory phenomenon. I work principally
from a paper “The mathematics of superoscillations” by Y. Aharonov et al5.
Chapter 2 of that paper provides a review of the quantum mechanical origins of
the subject. Superoscillations make their entrance in §2.5 (“Large weak values
and superoscillations,” page 22). I pick up the story in Chapter 3 (“Basic
mathematical properties of superoscillating sequences,” page 33).

Preparatory trivialities, and some terminology. Familiarly, the Fourier series

S(x) = 2
π

∞∑
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m
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—the limit of the partial sums

Sn(x) = 2
π
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m
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—provide a representation of the “sawtooth function”, to which the functions
Sn(x) provide progressively better approximations (Figure 16). Aharonov calls
functions of the form Sn(x)—and more generally of the form
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exp(ikmx), else
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:
{

weighted sums of finitely many
oscillatory Fourier components

—“Fourier sequences.” In this language, Fourier series are limits of Fourier
sequences.

Look to the function
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)
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)]n =
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)]n = eix = cos x + i sin x

which is evidently the simplest possible Fourier sequence/series. Binomial
expansion gives

Fn(x) =
n∑

p=0

ip
(n

p

)
cosn−p(x)sinp(x)

the real/imaginary parts of which provide an infinite set of identities, of which
the leading instances

cos x = cos2( 1
2x) − sin2( 1

2x)
sin x = 2 cos( 1

2x) sin( 1
2x)

—usually written
cos 2x = cos2 x − sin2 x

sin 2x = 2 cos x sin x

5 Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa & J. Tollaksen. The
paper is available on the web as an arXiv preprint (5 November 2015) and as a
Memoir of the American Mathematical Society (2017).
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—are the familiar “double angle formulæ.” Similar arguments lead directly to
multiple angle formulæ of ascending order; thus

cos 3x = cos3 x − 3 cos x sin2 x

sin 3x = 3 cos2 x sin x − sin3 x

cos 4x = cos4 x − 6 cos2 x sin2 x + sin4 x

sin 4x = 4 cos3 x sin x − 4 cos x sin3 x

The equivalence of the expressions on the left/right sides of such equations can
be established in Mathematica by means of the TrigExpand and TrigReduce
commands; thus

TrigExpand[cos 2x] = cos2 x − sin2 x

TrigReduce[cos2 x − sin2 x] = cos 2x

All of which hinges on the elementary fact that einx = (eix)n.

By slight adjustment—vistas of a new superoscillatory world. Look now, with
Aharonov, to the functions

Fn(x, a) ≡
[
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(
x
n

)
+ ia sin

(
x
n

)]n (1.1)

which give back the functions Fn(x) = eix (all n) in the case a = 1. Writing

=
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eix/n + e−ix/n
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2i

]n
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=
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1
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(1 + a)n−p(1 − a)peix(n−p)/ne−ixp/n

=
n∑

p=0

Bn(p, a) eikn(p)x (2)

Bn(p, a) = 1
2n

(n
p

)
(1 + a)n−p(1 − a)p

kn(p) = 1 − 2p/n

we see from (2) that each Fn(x, a) is a Fourier sequence, a weighted sum of n+1
Foruier terms eiknx. To distinguish such sequences from Fourier sequences in
general I will call them “Aharonov sequences.”

The wave numbers kn(p) : p = 0, 1, . . . , n proceed in n equal steps from
kn(0) = 1 to kn(n) = −1, and in all cases |kn(p)| ! 1.6 The associated wave
lengths λn(p) = 2π/|kn(p)| are therefore all greater than 2π.

6 Note that kn(n
2 ) = 0, so Fn(x, a) includes a constant term iff n is even.
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Working either from (1.1) or (1.2), we find that

Fn(x, a) ≈ [1 + iax/n]n : x
n & 1

so for any given x
lim

n→∞
Fn(x, a) = eiax (3)

which at a = 1 gives back the result discussed in the preceeding section, but for
a > 1 has wave number greater, and wavelength shorter, than that of any of the
contributory Fourier terms. Taking our language not from the space domain
but from the time domain, we have in the limit n → ∞ an angular frequency
greater, and period shorter, than that of any of the contributory Fourier terms,
whence my title: the whole vibrates faster than any of its parts. That, in a
nutshell, is the essence of the superoscillatory phenomenon.

Graphic evidence. Generally, one expects properties that hold in a limit to
be approximated ever better, to become ever more vividly evident as one
approaches the limit; that is the principle that—inevitably, since ∞ lies forever
out of reach—informs the following graphic experiments/demonstrations.

The functions Fn(x, a), eiax, etc. are complex-valued. For purposes of
graphic display one must look to their real (else imaginary) parts or (for some
purposes more usefully) to their absolute values or (for most purposes much
less usefully) to their phases.

the case F20(x, 2)

Figures 1 & 2 show respectively the cos(x/n) and sin(x/n) that enter into the
construction of F20(x, 2). All have wavelengths " 2π. The real parts of F20(x, 2)
and ei2x are superimposed in Figure 3a, their imaginary parts in Figure 4a.
Even though the asymptote ei2x has wavelength λ = π < 2π, the coincidence
is seen to be reasonably good on the interval |x| < 1

2π. Figure 3b shows the
absolute value of the difference between the real parts of F20(x, 2) and ei2x,
while Figure 4b shows the does the same for their imaginary parts; those figures
show in particular that the error grows rapidly as one moves away from x = 0.
Figure 5 (the same as Figure 3b, but with extended range) shows that the error
grows to an enormous (but finite) size, but is periodic, with period ξ20 = 20π.7

effect of increasing n, with a held constant

Figure 6 differs from Figure 3a only in that the value of n has been increased
from 20 to 202 = 400. In Figure 7 (note the extended range) the value of n has
been further increased to 203 = 8000. The upper bound of the “domain of good
approximation” has increased from about 1

2π to about 2π = 22( 1
2π) to about

8π = 22(2π) = 2222( 1
2π). We might, on that informal basis, expect in the case

n = 204 = 160000 to find that the domain of good approximation extends to
about x = 222222( 1

2π) = 32π, which is an expectation supported by Figure 8.

7 exp(x/n) has period 2πn, so | exp(x/n)| has period ξn = πn.
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effect of increasing a, with n held constant

Figure 9 differs from Figure 7 in only one respect: the parameter a has been
doubled (increased from 2 to 4) and the upper bound of the domain of good
approximation has been reduced from from about 8π to about 2π = ( 1

2 )2 8π.
A second doubling of the parameter (2 → 4 → 8) produces Figure 10; here the
location of the upper bound is difficult to estimate, but appears to lie in the
neighborhood of 1

2π = ( 1
2 )2( 1

2 )2 8π. It is, in any event clear, (see Figures 11 and
12) that increasing the value of a decreases the width of the domain of good
approximation, for which one can compensate by increasing the value of n.

qualitative effects of {a, n}-variation

The curves that connect maximal points in Figures 10, 11 & 12 were produced
by commands of the form Abs[Fn(x, a)].8 Such curves can be used to eliminate
a lot of irrelevant clutter and expose more clearly what is going on. Figure 13
shows the absolute values of Fn(x, 2) : n = {10, 11, 12}. The periodicity noted
previously is clearly evident. Gridlines at { 1

2nπ} and { 1
2nπ + nπ} locate the

maxima, which are found to have the values 1024, 2048 and 4096, respectively,
which grow—each to the next—by factors of 2. Increasing the value of a from
2 to 3 = ( 3

2 )2 produces Figure 14, in which the locations of the maxima remain
unchanged, but their values have increased enormously, to 59049, 177147 and
531441, which grow by factors of 3. The pattern persists when we increase the
value of a from 3 to 4 = (4

3 )3, producing Figure 15; the locations of the maxima
again remain unchanged, but their values have again increased enormously, to
1048576, 4194304 and 16777216, which grow by factors of 4.

Superoscillatory waveforms & associated graphics. Proceeding formally from

f(x) =
∫

g(k)eikxdk =
∫

g(k)
{

lim
n→∞

Fn(x, k)
}

dk

= lim
n→∞

fn(x) : fn(x) ≡
∫

g(k)Fn(x, k)dk

we might—if g(k) vanishes outside a bounded interval, and n is large enough
to overwhelm the domain-contracting effect of kmax—expect fn(x) to provide
a good and ever better approximation to f(x). More particularly, if f(x) refers
to a real-valued periodic waveform (period 2π) we have

f(x) =
{ ∑∞

m=0 gm cos(mx) : f(x) even∑∞
m=1 gm sin(mx) : f(x) odd (4)

From the Aharonov sequence Fn(x, k) we construct

Cn(x, k) = Fn(x, k) + Fn(x,−k)
2

Sn(x, k) = Fn(x, k) − Fn(x,−k)
2i

8 Abs[x + iy]=
√

x2 + y2.
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and observe that

lim
n→∞

Cn(x, k) = cos(kx) : lim
n→∞

Sn(x, k) = sin(kx)

Suppose the Fourier coefficients gm in (4) diminish so fast that truncation
at m = M produces what we can agree is a “good approximation”

fM (x) =
M∑

m=0,1

gm
cos(mx)
sin(mx)

to f(x). We then expect

fM,n(x) =
M∑

m=0,1

gm
Cn(x, m)
Sn(x, m)

to produce, for n sufficiently large, a good “superoscillatory approximation” to
f(x). I look to examples:

It was remarked on page 2 that the sawtooth function S(x)—which is real,
odd, has period 2π—results from setting

gm = (−)m+1 2
mπ

in the sine series. Truncation at M = 15 produces the function S15(x) displayed
in Figure 16 (note the Gibbs phenomenon that results from the discontinuity
of the sawtooth function). That same central portion of the superoscillatory
approximation S15,100000(x) to S(x) is shown in Figure 17. The figures are
indistinguishable, which is remarkable because the Fourier components that
enter into the construction of S15(x) all have wavenumbers " 1 (therefore
wavelengths ! 2π) while those that enter into the construction of S15,100000(x)
all have wavenumbers ! 1, therefore wavelengths greater than the period 2π of
the figure. There is, however, a heavy price to be paid for this superoscillatory
accomplishment, since

S15,100000(100000π/2) ≈ 3.52988 × 10115438

It would, in the absence of some heroically effective compression algorithm,
require an unreasonably enormous amount of energy to achieve by any means
a physical realization of such a wave.

We look to a second example. In

T (x) = 4
π

∞∑

m=1

1
2m − 1

sin(mx) =
{ +1 : 0 < x < π
−1 : π < x < 2π

we have the Fourier representation of a square wave of period 2π. Truncation
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at m = 15 produces the function T15(x) plotted in Figure 18 (Gibbs’
phenomenon is again conspicuous), of which the superoscillatory approximation
T15,100000(x) is shown in Figure 19. Again, the two are indistinguishable on the
interval shown, but differ radically (see again Figures 13–15) as x advances
toward 100000π/2. On the other hand, we expect T15(x) and T15,n(x) to
come into precise agreement on an unrestricted x-domain in the (physically/
computationally) unattainable limit n → ∞.

Concluding comments. In my attempt to display as simply as possible the most
essential features of the superoscillation phenomenon I have ridden roughshod
over any number of mathematical niceties (for example: the distinction between
“convergence” and “uniform convergence”). Those are treated in elaborate
detail by Aharonov and colleagues in the paper cited previously.5 Berry4 used
the method of stationary phase (saddlepoint method) to study some aspects of
the mathematical theory.

So far as concerns applications, the subject was, as previously remarked,
born of an application (theory of weak measurements), and Aharonov et al5
look also to some of its other quantum ramifications; they look, for example,
to the dynamical evolution of superoscillatory initial states under action of the
Schrödinger equation (free particle, oscillator), the wave equation and other
dynamical equations. Their bibliography, though most of the 132 papers cited
refer to aspects of weak measurement theory, includes quite a number that
allude in their titles to superoscillations. Michael Berry, in the §5.“Concluding
Remarks” of the paper that announced his entry into the field,4 remarks that
“Aharonov’s discovery. . . could have applications in several branches of physics,”
and proceeds to list some: “Perhaps more interesting are the superoscillatory
functions of two variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the the wavelength λ would
be resolved by representing them as superoscillations.” And in subsequent
publications (cited by Aharonov) Berry proceeeded to explore some of those
potential applications.9

I quote now from Berry’s §4.“Beethoven at 1 Hz”: “Professor I. Daubechies
has informed me that superoscillations are known in signal processing, in the
context of oversampling. This is a function faster than the Nyquist rate;
i.e., at points x = nπ where the function is bandlimited by |k| ! 1. If a
function is oversampled in a finite range, extrapolation outside this range is
exponentially unstable.10 She quotes B. Logan as saying that it is possible
in principle to design a bandlimited signal with a bandwidth of 1 Hz that
would reproduce Beethoven’s 9th symphony exactly. With the superoscillatory

9 “Evolution of quantum superoscillations, and optical superresolution
without evanescent waves,” (2006); “Superoscillation in speckle patterns,”
(2009); “Exact nonparaxial transmission of subwavelength detail using
superoscillations,” (2013)

10 Y. Aharanov, J. Anandan, S. Popescu & L. Vaidman, Phys. Rev. Letters
64, 2965 (1990).
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functions described in this paper it is possible to give an explicit recipe for
constructing this signal.” Which Berry proceeds to do.11 The Beethoven story
occurs again (and is in some respects subverted) in A. Kempf, “Blackholes,
bandwidths & Beethoven,”12 which borrows much of its formalism from Berry.
I have been able to discover nothing about the “B. Logan” responsible for this
bit of dramatic frivolity.

11 Ingrid Daubechies is a Belgian physicist/mathematician best known for her
contribution to the theory of wavelets, and at the beginning of her career was a
student/collaborator of Alex Grossmann when he was working as co -inventor
of that subject; she was for many years at Princeton, is presently at Duke.
Grossmann was a gloomy Romanian-French Harvard graduate student of Roy
Glauber, who hung around Brandeis in the late 1950s because he and Glauber
could not get along, so became my friend. Also victimized by Glauber was my
Brandeis friend Evelyn Fox (Keller); she had been assured that “women are
ill-equipped to study the foundations of quantum theory” by Glauber, who was
a no-show at her qualifying exam, mentioned later (without apology) that he
had slept late that day.

12 arXiv:gr-qc/9907084v2 (3 Nov 1999).


